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In management science, as in most sciences, there is a natural interplay between theory andpractice. Theory
provides tools for applied work and suggests viable approaches to problem solving, whereas practice adds
focus to the theory by suggesting areas for theoretical development in its continual quest for problem-solving
capabilities. It is impossible, then, to understand fully either theory or practice in isolation. Rather, they need
to be considered ascontinually interactingwith one another.

Having established linear programming as a foundation for mathematical programming theory, we now
are in a position to appreciate certain aspects of implementing mathematical programming models. In the
next three chapters, we address several issues of mathematical-programming applications, starting with a
general discussion and followed by specific applications. By necessity, at this point, the emphasis is on linear
programming; however, most of our comments apply equally to other areas of mathematical programming,
and we hope they will provide a useful perspective from which to view forthcoming developments in the text.

This chapter begins by presenting two frameworks that characterize the decision-making process. These
frameworks suggest how modeling approaches to problem solving have evolved; specify those types of
problems for which mathematical programming has had most impact; and indicate how other techniques
can be integrated with mathematical-programming models. The remainder of the chapter concentrates on
mathematical programming itself in terms of problem formulation and implementation, including the role of
the computer. Finally, an example is presented to illustrate much of the material.

5.1 THE DECISION-MAKING PROCESS

Since management science basically aims to improve the quality of decision-making by providing managers
with a better understanding of the consequences of their decisions, it is important to spend some time reflecting
upon the nature of the decision-making process and evaluating the role that quantitative methods, especially
mathematical programming, can play in increasing managerial effectiveness.

There are several ways to categorize the decisions faced by managers. We would like to discuss two
frameworks, in particular, since they have proved to be extremely helpful in generating better insights into
the decision-making process, and in defining the characteristics that a sound decision-support system should
possess. Moreover, each framework leads to new perceptions concerning model formulation and the role of
mathematical programming.
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176 Mathematical Programming in Practice 5.1

Anthony’s Framework: Strategic, Tactical, and Operational Decisions

The first of these frameworks was proposed by Robert N. Anthony.∗ He classified decisions in three categories:
strategic planning, tactical planning, and operations control. Let us briefly comment on the characteristics of
each of these categories and review their implications for a model-based approach to support management
decisions.

The examples given to illustrate specific decisions belonging to each category are based primarily on
the production and distribution activities of a manufacturing firm. This is done simply for consistency and
convenience; the suggested framework is certainly appropriate for dealing with broader kinds of decisions.

a) Strategic Planning

Strategic planning is concerned mainly with establishing managerial policies and with developing the neces-
sary resources the enterprise needs to satisfy its external requirements in a manner consistent with its specific
goals. Examples of strategic decisions are major capital investments in new production capacity and expan-
sions of existing capacity, merger and divestiture decisions, determination of location and size of new plants
and distribution facilities, development and introduction of new products, and issuing of bonds and stocks to
secure financial resources.

These decisions are extremely important because, to a great extent, they are responsible for maintaining
the competitive capabilities of the firm, determining its rate of growth, and eventually defining its success
or failure. An essential characteristic of these strategic decisions is that they have long-lasting effects, thus
mandating long planning horizons in their analysis. This, in turn, requires the consideration of uncertainties
and risk attitudes in the decision-making process. Moreover, strategic decisions are resolved at fairly high
managerial levels, and are affected by information that is both external and internal to the firm. Thus, any
form of rational analysis of these decisions necessarily has a very broad scope, requiring information to be
processed in a very aggregate form so that all the dimensions of the problem can be included and so that top
managers are not distracted by unnecessary operational details.

b) Tactical Planning

Once the physical facilities have been decided upon, the basic problem to be resolved is the effective alloca-
tion of resources (e.g., production, storage, and distribution capacities; work-force availabilities; marketing,
financial, and managerial resources) to satisfy demand and technologicalrequirements, taking into account
the costs and revenues associated with the operation of the resources available to the firm. When we are
dealing with several plants, many distribution centers, and regional and local warehouses, having products
that require complex multistage fabrication and assembly processes, and serving broad market areas affected
by strong randomness and seasonalities in their demand patterns, these decisions are far from simple. They
usually involve the consideration of a medium-range time horizon divided into several periods, and require
significant aggregation of the information to be processed. Typical decisions to be made within this con-
text are utilization of regular and overtime work force, allocation of aggregate capacity resources to product
families, definition of distribution channels, selection of transportation and transshipment alternatives, and
allocation of advertising and promotional budgets.

c) Operations Control

After making an aggregate allocation of the resources of the firm, it is necessary to deal with the day-to-day
operational and scheduling decisions. This requires the completedisaggregation of the information generated
at higher levels into the details consistent with the managerial procedures followed in daily activities. Typical
decisions at this level are the assignment of customer orders to individual machines, the sequencing of these

∗ Robert N. Anthony,Planning and Control Systems: A Framework for Analysis, Harvard University Graduate School
of Business Administration, Boston, 1965.
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orders in the work shop, inventory accounting and inventory control activities, dispatching, expediting and
processing of orders, vehicular scheduling, and credit granting to individual customers.

These three types of decisions differ markedly in various dimensions. The nature of these differences,
expressed in relative terms, can be characterized as in Table 5.1.

Table 5.1 Distinct Characteristics of Strategic, Tactical, and
Operational Decisions

Strategic Tactical Operations
Characteristics planning planning control

Objective Resource Resource Execution
acquisition utilization

Time horizon Long Middle Short

Level of management
involvement Top Medium Low

Scope Broad Medium Narrow

Source of
information (External & Internal) Internal

Level of detail Highly Moderately Low
of information aggregate aggregate

Degree of
uncertainty High Moderate Low

Degree of risk High Moderate Low

Implications of Anthony’s Framework: A Hierarchical Integrative Approach

There are significant conclusions that can be drawn from Anthony’s classification, regarding the nature of the
model-based decision-support systems. First, strategic, tactical, and operational decisions cannot be madein
isolation because they interact strongly with one another. Therefore, an integrated approach is required in order
to avoid suboptimization. Second, this approach, although essential, cannot be made without decomposing
the elements of the problem in some way, within the context of a hierarchical system that links higher-level
decisions with lower-level ones in an effective manner. Decisions that are made at higher levels of the system
provide constraints for lower-level decision making, and decision-makers must recognize their impact upon
lower-level operations.

This hierarchical approach recognizes the distinct characteristics of the type of management participation,
the scope of the decision, the level of aggregation of the required information, and the time frame in which
the decision is to be made. In our opinion, it would be a serious mistake to attempt to deal with all these
decisions at once via a monolithic system (or model). Even if computer and methodological capabilities
would permit the solution of large, detailed integrated models—clearly not the case today—that approach is
inappropriate because it is not responsive to management needs at each level of the organization, and would
prevent interactions between models and managers at each organization echelon.

In designing a system to support management decision-making, it is imperative, therefore, to identify
ways in which the decision process can be partitioned, to select adequate models to deal with the individual
decisions at each hierarchical level, to design linking mechanisms for the transferring of the higher-level
results to the lower hierarchical levels, which include means to disaggregate information, and to provide
quantitative measures to evaluate the resulting deviations from optimal performance at each level.

Mathematical programming is suited particularly well for supporting tactical decisions. This category
of decisions, dealing with allocation of resources through a middle-range time horizon, lends itself quite
naturally to representation by means of mathematical-programming models. Typically, tactical decisions
generate models with a large number of variables and constraints due to the complex interactions among
the choices available to the decision-maker. Since these choices are hard to evaluate on merely intuitive
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grounds, a decision-maker could benefit greatly from a model-based support effort. Historically, mathematical
programming has been the type of model used most widely in this capacity, and has contributed a great deal
to improving the quality of decision-making at the tactical level.

As we indicated before, tactical decisions are affected by only moderate uncertainties. This characteristic
is useful for the application of linear programming, since models of this kind do not handle uncertainties
directly. The impact of moderate uncertainties, however, can be assessed indirectly by performing sensitivity
analysis. Furthermore, sensitivity tests and shadow price information allow the decision-maker to evaluate
how well the resources of the firm are balanced.

For example, a tactical linear-programming model designed to support production-planning decisions
might reveal insufficient capacity in a given stage of the production process. The shadow price associated
with that capacity constraint provides a local indication of the payoff to be obtained from a unit increase in
that limited capacity.

The role of mathematical programming in supporting strategic and operational decisions has been more
limited. The importance of uncertainties and risk in strategic decisions, and the great amount of detailed
information necessary to resolve operational problems work against the direct use of mathematical program-
ming at these levels. In the decision-making hierarchy, mathematical-programming models become the links
between strategic and operational decisions. By carefully designing a sequence of model runs, the decision-
maker can identify bottlenecks or idle facilities; and this information provides useful feedback for strategic
decisions dealing with acquisition or divestment of resources. On the other hand, by contributing to the
optimalallocation of the aggregate resources of the firm, mathematical-programming models generate the
broad guidelines for detailed implementation. Operational decisions are reduced, therefore, to producing the
appropriate disaggregation of the tactical plans suggested by the mathematical-programming model against
the day-to-day requirements of the firm.

The design of a hierarchical system to support the overall managerial process is an art that demands a
great deal of pragmatism and experience. In Chapter 6 we describe anintegrated system to deal with strategic
and tactical decisions in the aluminum industry. The heart of the system is formed by two linear-programming
models that actively interact with one another. In Chapter 10 we analyze a hierarchical system to decideon
the design of a job-shop facility. In that case a mixed-integer programming model and a simulation model
represent tactical and operational decisions, respectively. Chapter 7 presentsanother practical application of
linear programming, stressing the role of sensitivity analysis in coping with future uncertainties. Chapter 14
discusses the use of decomposition for bond-portfolio decisions.

Simon’s Framework: Programmed and Nonprogrammed Decisions

A second decision framework that is useful in analyzing the role of models in managerial decision-making
was proposed by Herbert A. Simon.∗ Simon distinguishes two types of decisions:programmedandnon-
programmed, which also are referred to asstructuredandunstructureddecisions, respectively. Although
decisions cover a continuous spectrum between these two extremes, it is useful first to analyze the character-
istics of these two kinds.

a)Programmed Decisions

Programmed decisions are those that occur routinely and repetitively. They can be structured into specific
procedural instructions, so they can be delegated without undue supervision to the lower echelons of the
organization. As Simon put it, programmed decisions are normally the domain of clerks. This does not
necessarily imply that high-level managers do not have their share of programmed decision-making; it simply
indicates that the incidence of programmed decisions increases the lower we go in the hierarchy of the
organization.

∗ Herbert A. Simon,The Shape of Automation for Men and Management, Harper and Row, 1965.
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b) Nonprogrammed Decisions

Nonprogrammed decisions are complex, unique, and unstructured. They usually do not lend themselves to a
well defined treatment, but rather require a large amount of good judgment and creativity in order for them
to be handled effectively. Normally, top managers are responsible for the more significant nonprogrammed
decisions of any organization.

Implications of Simon’s Framework: The Degree ofAutomation of the Decision-Making Process

Simon’s framework is also very helpful in identifying the role of models in the decision-making process. Its
implications are summarized in Table 5.2 which shows the contribution of both conventional and modern
methods to support programmed and nonprogrammed decisions.

Table 5.2 The Implications of Simon’s Taxonomy

Type of Conventional Modern
decision methods methods

Programmed Organizational Structure Electronic data processing
(Structured) Procedures and Mathematical models

Routine regulations
Repetitive Habit-forming

Nonprogrammed Policies Hierarchical system design
(Unstructured) Judgment and intuition Decision theory

Unique Rules of thumb Heuristic problem solving
Complex Training and promotion

A major issue regarding programmed decisions is how to develop a systematic approach to cope with
routine situations that an organization faces on a repetitive basis. A traditional approach is the preparation of
written procedures and regulations that establish what to do under normal operating conditions, and that signal
higher-management intervention whenever deviations from current practices occur. If properly designed and
implemented, these procedures tend to create desirable patterns of behavior and habits among the personnel
dealing with routine decisions. Control mechanisms normally are designed to motivate people, to measure
the effectiveness of the decisions, and to take corrective actions if necessary.

What allows the proper execution and management of programmed decisions is the organizational struc-
ture of the firm, which breaks the management functions into problems of smaller and smaller scope. At the
lower echelons of the organization, most of the work assumes highly structured characteristics and, therefore,
can be delegated easily to relatively unskilled personnel.

During the last twenty years, we have witnessed a tremendous change in the way programmed decisions
are made. First, the introduction of computers has created new capabilities to store, retrieve, and process
huge amounts of information. When these capabilities are used intelligently, significant improvements can
be made in the quality of decision-making at all levels. Second, the data bank that usually is developed
in the preliminary stages of computer utilization invites the introduction of models to support management
decisions. In many situations, these models have been responsible for adding to the structure of a given
decision. Inventory control, production planning, and capital budgeting are just a few examples of managerial
functions that were thought of as highly nonprogrammed, but now have become significantly structured.

Conventional methods for dealing with nonprogrammed decisions rely quite heavily on the use of judg-
ment. Policies and rules of thumb sometimes can be formulated to guide the application of sound judgment
and lessen the chances that poor judgment is exercised. Since good judgment seems to be the most precious
element for securing high-quality decision-making in nonprogrammed decisions, part of the conventional
efforts are oriented toward the recognition of those individuals who possess this quality. Management-
development programs attempt to stimulate the growth of qualified personnel, and promotions tend to raise
the level of responsibility of those who excel in their managerial duties.
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One of the greatest disappointments for the advocates of management science is that, in its present
form, it has not had a strong impact in dealing with nonprogrammed decisions. Broad corporate models
have been constructed to help the coordination of the high-level managerial functions. Also, hierarchical
systems are beginning to offer meaningful ways to approach problems of the firm in which various echelons
of managers are involved. In addition, disciplines like decision theory and heuristic problem-solving have
made contributions to the effective handling of nonprogrammed decisions. However, it is fair to say that we
are quite short of achieving all the potentials of management science in this area of decision-making. This
situation is changing somewhat with all the interest in unstructured social problems such as energy systems,
population control, environmental issues, and so forth.

We can conclude, therefore, that the more structured the decision, the more it is likely that a meaningful
model can be developed to support that decision.

5.2 STAGES OF FORMULATION, SOLUTION, AND IMPLEMENTATION

Having seen where mathematical programming might be most useful and indicated its interplay with other
managerial tools, we will now describe an orderly sequence of steps that can be followed for a systematic
formulation, solution, and implementation of a mathematical-programming model. These steps could be
applied to the development of any management-science model. However, due to the nature of this book, we
will limit our discussions to the treatment of mathematical-programming models.

Although the practical applications of mathematical programming cover a broad range of problems, it
is possible to distinguish five general stages that the solution of any mathematical-programming problem
should follow.

A. Formulating the model.
B. Gathering the data.
C. Obtaining an optimal solution.
D. Applying sensitivity analysis.
E. Testing and implementing the solution.

Obviously, these stages are not defined very clearly, and they normally overlap and interact with each
other. Nevertheless we can analyze, in general terms, the main characteristics of each stage.

A) Formulating the Model

The first step to be taken in a practical application is the development of the model. The following are
elements that define the model structure:

a) Selection of a Time Horizon

One of the first decisions the model designer has to make, when applying mathematical programming to a
planning situation, is the selection of the time horizon (also referred to as planning horizon, or cutoff date).
The time horizon indicates how long we have to look into the future to account for all the significant factors of
the decision under study. Its magnitude reflects the future impact of the decision under consideration. It might
cover ten to twenty years in a major capital-investment decision, one year in an aggregate production-planning
problem, or just a few weeks in a detailed scheduling issue.

Sometimes it is necessary to divide the time horizon into several time periods. This is done in order to
identify the dynamic changes that take place throughout the time horizon. For example, in a production-
planning problem it is customary to divide the one-year time horizon into time periods of one month’s duration
to reflect fluctuations in the demand pattern due to product seasonalities. However, if the model is going to
be updated and resolved at the beginning of each month with a rolling one-year time horizon, it could be
advantageous to consider unequal time periods; for example, to consider time periods of one month’s duration
during the first three months, and then extend the duration of the time periods to three months, up to the end
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of the time horizon. This generally will not adversely affect the quality of the decisions and will reduce the
computational burden on the model significantly.

b) Selection of Decision Variables and Parameters

The next step in formulating the mathematical-programming model is to identify the decision variables, which
are those factors under the control of the decision-maker, and the parameters, which are beyond the control
of the decision-maker and are imposed by the external environment.

The decision variables are the answers the decision-maker is seeking. If we are dealing with production-
planning models, some relevant decision variables might be the amount to be manufactured of each product at
each time period, the amount of inventory to accumulate at each time period, and the allotment of man-hours
of regular and overtime labor at each time period.

On some occasions, a great amount of ingenuity is required to select those decision variables that most
adequately describe the problem being examined. In some instances it is possible to decrease the number of
constraints drastically or to transform an apparent nonlinear problem into a linear one, by merely defining
the decision variables to be used in the model formulation in a different way.

The parameters represent those factors which affect the decision but are not controllable directly (such as
prices, costs, demand, and so forth). In deterministic mathematical-programming models, all the parameters
are assumed to take fixed, known values, where estimates are provided via point forecasts. The impact of this
assumption can be tested by means of sensitivity analysis. Examples of some of the parameters associated
with a production-planning problem are: product demands, finished product prices and costs, productivity of
the manufacturing process, and manpower availability.

The distinction made between parameters and decision variables is somewhat arbitrary and one could
argue that, for a certain price, most parameters can be controlled to some degree by the decision-maker.
For instance, the demand for products can be altered by advertising and promotional campaigns; costs and
prices can be increased or decreased within certain margins, and so on. We always can start, however, from
a reference point that defines the appropriate values for the parameters, and insert as additional decision
variables those actions the decision-maker can make (like promotions or advertising expenditures) to create
changes in the initial values of the parameters. Also, shadow-price information can be helpful in assessing
the consequences of changing the values of the initial parameters used in the model.

c) Definition of the Constraints

The constraint set reflects relationships among decision variables and parameters that are imposed by the
characteristics of the problem under study (e.g., the nature of the production process, the resources available to
the firm, and financial, marketing, economical, political, and institutional considerations). These relationships
should be expressed in a precise, quantitative way. The nature of the constraints will, to a great extent,
determine the computational difficulty of solving the model.

It is quite common, in the initial representation of the problem, to overlook some vital constraints or to
introduce some errors into the model description, which will lead to unacceptable solutions. However, the
mathematical programming solution of the ill-defined model provides enough information to assist in the
detection of these errors and their prompt correction. The problem has to be reformulated and a new cycle
has to be initiated.

d) Selection of the Objective Function

Once the decision variables are established, it is possible to determine the objective function to be minimized
or maximized, provided that a measure of performance (or effectiveness) has been established and can be
associated with the values that the decision variables can assume. This measure of performance provides
a selection criterion for evaluating the various courses of action that are available in the situation being
investigated. The most common index of performance selected in business applications isdollar value; thus,
we define the objective function as the minimization of cost or the maximization of profit. However, other
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objective functions could become more relevant in some instances. Examples of alternative objectives are:

Maximize total production, in units.
Minimize production time.
Maximize share of market for all or some products.
Maximize total sales, in dollars or units.
Minimize changes of production pattern.
Minimize the use of a particular scarce (or expensive) commodity.

The definition of an acceptable objective function might constitute a serious problem in some situations,
especially when social and political problems are involved. In addition, there could be conflicting objectives,
each important in its own right, that the decision-maker wants to fulfill. In these situations it is usually helpful
to define multiple objective functions and to solve the problem with respect to each one of them separately,
observing the values that all the objective functions assume in each solution. If no one of these solutions
appears to be acceptable, we could introduce as additional constraints the minimum desirable performance
level of each of the objective functions we are willing to accept, and solve the problem again, having as an
objective the most relevant of those objective functions being considered. Sequential tests and sensitivity
analysis could be quite valuable in obtaining satisfactory answers in this context.

Another approach available to deal with the problem of multiple objectives is to unify all the conflicting
criteria into a single objective function. This can be accomplished by attaching weights to the various measures
of performance established by the decision-maker, or by directly assessing a multiattribute preference (or
utility function) of the decision-maker. This approach, which is conceptually extremely attractive but requires
a great deal of work in implementation, is the concern of a discipline calleddecision theory(or decision
analysis) and is outside the scope of our present work.∗

B) Gathering the Data

Having defined the model, we must collect the data required to define the parameters of the problem. The data
involves the objective-function coefficients, the constraint coefficients (also called the matrix coefficients)
and the righthand side of the mathematical-programming model. This stage usually represents one of the
most time-consuming and costly efforts required by the mathematical-programming approach.

C) Obtaining an Optimal Solution

Because of the lengthy calculations required to obtain the optimal solution of a mathematical-programming
model, a digital computer is invariably used in this stage of model implementation. Today, all the computer
manufacturers offer highly efficient codes to solve linear-programming models. These codes presently can
handle general linear-programming problems of up to 4000 rows, with hundreds of thousands of decision
variables, and are equipped with sophisticated features that permit great flexibility in their operation and
make them extraordinarily accurate and effective. Instructions for use of these codes are provided by the
manufacturers; they vary slightly from one computer firm to another.

Recently, very efficient specialized codes also have become available for solving mixed-integer program-
ming problems, separable programming problems, and large-scale problems with specific structures (using
generalized upper-bounding techniques, network models, and partitioning techniques). Models of this nature
and their solution techniques will be dealt with in subsequent chapters.

When dealing with large models, it is useful, in utilizing computer programs, to input the required data
automatically. These programs, often called matrix generators, are designed to cover specific applications.
Similarly, computer programs often are written to translate the linear-programming output, usually too tech-
nical in nature, into meaningful managerial reports ready to be used by middle and top managers. In the next

∗ For an introduction to decision theory, the reader is referred to Howard Raiffa,Decision Analysis—Introductory
Lectures on Choices under Uncertainty, Addison-Wesley, 1970.
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section, dealing with the role of the computer in solving mathematical-programming models, we will discuss
these issues more extensively.

D) Applying Sensitivity Analysis

One of the most useful characteristics of linear-programming codes is their capability to perform sensitivity
analysis on the optimalsolutions obtained for the problem originally formulated. These postoptimum analyses
are important for several reasons:

a) Data Uncertainty

Much of the information that is used in formulating the linear program is uncertain. Future production
capacities and product demand, product specifications and requirements, cost and profit data, among other
information, usually are evaluated through projections and average patterns, which are far from being known
with complete accuracy. Therefore, it is often significant to determine how sensitive the optimal solutionis
to changes in those quantities, and how the optimal solutionvaries when actual experience deviates from the
values used in the original model.

b) Dynamic Considerations

Even if the data were known with complete certainty, we would still want to perform sensitivity analysis
on the optimal solution to find out how the recommended courses ofaction should be modified after some
time, when changes most probably will have taken place in the original specification of the problem. In other
words, instead of getting merely a static solution to the problem, it is usually desirable to obtain at least some
appreciation for a dynamic situation.

c) Input Errors

Finally, we want to inquire how errors we may have committed in the original formulation of the problem
may affect the optimalsolution.

In general, the type of changes that are important to investigate are changes in the objective-function
coefficients, in the righthand-side elements, and in the matrix coefficients. Further, it is sometimes necessary to
evaluate the impact on the objective function of introducing new variables or new constraints into the problem.
Although it is often impossible to assess all of these changes simultaneously, good linear-programming codes
provide several means of obtaining pertinent information about the impact of these changes with a minimum
of extra computational work.

Further discussions on this topic, including a description of the types of output generated by computer
codes, are presented in the next section of this chapter.

E) Testing and implementing the Solution

The solution should be tested fully to ensure that the model clearly represents the real situation. We already
have pointed out the importance of conducting sensitivity analysis as part of this testing effort. Should the
solution be unacceptable, new refinements have to be incorporated into the model and new solutions obtained
until the mathematical-programming model is adequate.

When testing is complete, the model can be implemented. Implementation usually means solving the
model with real data to arrive at a decision or set of decisions. We can distinguish two kinds of implementation:
a single or one-time use, such as a plant location problem; and continual or repeated use of the model, such
as production planning or blending problems. In the latter case, routine systems should be established to
provide input data to the linear-programming model, and to transform the output into operating instructions.
Care must be taken to ensure that the model is flexible enough to allow for incorporating changes that take
place in the real operating system.
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5.3 THE ROLE OF THE COMPUTER

Solving even small mathematical-programming problems demands a prohibitive amount of computational
effort, if undertaken manually. Thus, all practical applications of mathematical programming require the use
of computers.

In this section we examine the role of digital computers in solving mathematical-programming models.
The majority of our remarks will be directed to linear-programming models, since they have the most advanced
computer support and are the models used most widely in practice.

The task of solving linear programs is greatly facilitated by the very efficient linear-programming codes
that most computer manufacturers provide for their various computer models. In a matter of one or two days,
a potential user can become familiar with the program instructions (control language or control commands)
that have to be followed in order to solve a given linear-programming problem by means of a specific
commercial code. The ample availability of good codes is one of the basic reasons for the increasing impact
of mathematical programming on management decision-making.

Commercial mathematical-programming codes have experienced an interesting evolution during the last
decade. At the beginning, they were simple and rigid computer programs capable of solving limited-size
models. Today, they are sophisticated and highly flexible information-processing systems, with modules that
handle incoming information, provide powerful computational algorithms, and report the model results in
a way that is acceptable to a manager or an application-oriented user. Most of the advances experienced
in the design of mathematical-programming codes have been made possible by developments in software
and hardware technology, as well as break-throughs in mathematical-programming theory. The continual
improvement in mathematical-programming computational capabilities is part of the trend to reduce running
times and computational costs, to facilitate solutions of larger problems (by using network theory and large-
scale system theory), and to extend the capabilities beyond the solution of linear-programming models into
nonlinear and integer-programmingproblems.

The field mathematical-programming computer systems is changing rapidly and the number of computer
codes currently available is extremely large. For these reasons, we will not attempt to cover the specific
instructions of any linear-programming code in detail. Rather, we will concentrate on describing the basic
features common to most good commercial systems, emphasizing those important concepts the user has to
understand in order to make sound use of the currently existing codes.

Input Specifications

The first task the user is confronted with, when solving a linear-programming model by means of a commercial
computer code, is the specification of the model structure and the input of the corresponding values of the
parameters. There are several options available to the user in the performance of this task. We will examine
some of the basic features common to most good codes in dealing with input descriptions.

In general, a linear-programming problem has the following structure:

Maximize (or Minimize)z =

n∑
j =1

c j x j , (1)

subject to:

n∑
j =1

ai j x j (≥, =, ≤) bi , (i = 1, 2, . . . , m), (2)

x j ≥ 0, for some or allj, (3)

x j free, for some or allj, (4)

x j ≥ ` j , (` j 6= 0), for some or allj, (5)

x j ≤ u j , (u j 6= ∞), for some or allj . (6)
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This model formulation permits constraints to be specified either as ‘‘greater than or equal to’’(≥)

inequalities, ‘‘less than or equal to’’(≤) inequalities, or simple equalities(=). It also allows for some
variables to be nonnegative, some to be unconstrained in sign, and some to have lower and/or upper bounds.

a) Reading the Data

The most important elements the user has to specify in order to input the problem data are:

Names of the decision variables, constraints, objective function(s), and righthand side(s). Names have
to be given to each of this model’s elements so that they can be identified easily by the user. The names
cannot exceed a given number of characters (normally 6 or 8), depending on the code being used. Moreover,
it is important to adopt proper mnemonics in assigning names to these elements for easy identification of the
actual meaning of the variables and constraints. For instance, instead of designating by X37 and X38 the
production of regular and white-wall tires during the month of January, it would be better to designate them
by RTJAN and WTJAN, respectively.

Numerical values of the parametersai j , bi , andc j . Only nonzero coefficients have to be designated. This
leads to significant savings in the amount of information to be input, since a great percentage of coefficientsare
zero in most linear-programming applications. The specification of a nonzero coefficient requires three pieces
of information: the row name, the column name, and the numerical value corresponding to the coefficient.

Nature of the constraint relationship.The user should indicate whether a given constraint has a=, ≥, or ≤

relationship. Also, many systems permit the user to specify a range on a constraint consisting of both the≥

and≤ relationships.

Free and bounded variables.Almost all codes assume the variables to be nonnegative unless specified
otherwise. This reduces the amount of data to be input, since in most practical applications the variables are
indeed nonnegative. Thus the user need only specify those variables that are ‘‘free’’ (i.e., bounded neither
from above nor from below), and those variables that have lower and upper bounds. The lower and upper
bounds may be either positive or negative numbers.

Nature of the optimization command.Instructions have to establish whether the objective function is to be
minimized or maximized. Moreover, most linear-programming codes allow the user to specify, if so desired,
several objective functions and righthand sides. The code then proceeds to select one objective function and
one righthand side at a time, in a sequence prescribed by the user, and the optimal solution is found for eachof
the resulting linear programs. This is a practical and effective way to perform sensitivity analysis. Whenever
several objective functions and righthand sides are input, the user should indicate which one of these elements
to use for a given optimization run.

Title of problem and individual runs.It is useful to assign a title to the overall problem and to each of the
sensitivity runs that might be performed. These titles have to be supplied externally by the user.

The information given to the computer is stored in the main memory core or, if the problem is extremely
large, in auxiliary memory devices. Needless to say, the computational time required to solve a problem
increases significantly whenever auxiliary memory is required, due to the added information-processing
time. Within the state of the current computer technology, large computers (e.g., IBM 370/195) can handle
problems with up to 4000 constraints without using special large-scale theoretical approaches.

b) Retrieving a Summary of the Input Data

Most codes permit the user to obtain summarized or complete information on the input data. This information
is useful in identifying possible errors due to careless data specification, or to inappropriate model formulation.
In addition, the input summary can be of assistance in detecting any special structure of the model that can
be exploited for more efficient computational purposes.
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The following are examples of types of summary information on the data input that are available in many
codes:

Number of rows and columns in the coefficient matrix,
Number of righthand sides and objective functions,
Density of the coefficient matrix (i.e., the percentage of nonzero coefficients in the
total number of coefficients),
Number of nonzero elements in each row and column,
Value of the largest and smallest element in the coefficient matrix, righthand side(s),
and objective function(s),
Printout of all equations in expanded form,
Picture of the full coefficient matrix or a condensed form of the coefficient matrix.

c) Scaling the Input Data

The simultaneous presence of both large and small numbers in the matrix of coefficients should be avoided
whenever possible, because it tends to create problems of numerical instability. This can be avoided by
changing the unit of measure of a given variable (say, from lbs to 100 lbs, or from $1000 to $)—this change
will reduce (or increase) the numerical values on a given column; or by dividing (or multiplying) a row by a
constant, thus reducing (or increasing) the numerical values of the coefficients belonging to that row.

d) Matrix Generators

When dealing with large linear-programming models, the task of producing the original matrix of coeffi-
cients usually requires an extraordinary amount of human effort and elapsed time. Moreover, the chance of
performing these tasks without errors is almost nil. For example, a problem consisting of 500 rows and 2000
variables, with a matrix density of 10 percent, has 500×2000×0.10 = 100,000 nonzero coefficients that need
to be input. As we indicated before, most linear-programming codes require three pieces of information to
be specified when reporting a nonzero coefficient; these are the corresponding row name, column name, and
coefficient value. Thus, in our example the user will need to input 300,000 elements. If the input operations
are to be performed manually, the chance of absolute freedom from error is extremely low.

Moreover, in most practical applications, there is a great need for restructuring the matrix of coefficients
due to dynamic changes in the problem under study, to model-formulation alternatives to be analyzed, and to
sensitivity runs to be performed. A matrix generator helps address these difficulties by providing an effective
mechanism to produce and revise the coefficient matrix.

A matrix generator is a computer program that allows the user to input the linear-programming data in a
convenient form by prescribing only a minimum amount of information. Normally, it takes advantage of the
repetitive structure that characterizes most large linear-programming models, where many of the coefficients
are+1, −1, or zero. The matrix generator fills in those coefficients automatically, leaving to the user the
task of providing only the input of those coefficients the program cannot anticipate or compute routinely.
Multistage or multiperiod models have the tendency to repeat a given submatrix of coefficients several times.
The matrix generator automatically duplicates this submatrix as many times as necessary to produce the final
model structure. Matrix generators also provide consistency checks on input data to help detect possible
sources of error.

Matrix generators also can be used to compute the values of some of the model coefficients directly from
raw data provided by the user (e.g., the program might calculate the variable unit cost of an item by first
evaluating the raw material costs, labor costs, and variable overhead). Moreover, the matrix generator can
provide validity checks to ensure that no blunt errors have been introduced in the data. Simple checks consist
of counting the number of nonzero coefficients in some or all of the rows andcolumns, in analyzing the signs
of some critical variable coefficients,and so forth.

Sophisticated mathematical-programming codes have general-purpose matrix generators as part of their
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system. Instances are also quite common where the user can prepare his own special-purpose matrix generator
to be used as part of the linear-programming computations.

Solution Techniques

There has been considerable concern in the development of mathematical-programming systems to reduce
the computational time required to solve a linear-programming problem by improving the techniques used
in the optimization stage of the process. This has been accomplished primarily by means of refinements in
the matrix-inversion procedures (derived from matrix triangularization concepts), improvements in the path-
selection criterion (by allowing multiple pricing of several columns to be considered as possible incoming
variables), and use of more efficient presolution techniques (by providingcrashingoptions to be used in order
to obtain an initial feasible solution, or by permitting the user to specify starting columns in the initial basis).

Other important issues associated with the use computers in solving linear-programming problems are
the presence of numerical errors and the tolerances allowed in defining the degree of accuracy sought in
performing the computations. Most codes permit the user to exercise some options with regard to these
issues. We will comment briefly on some of the most important features of those options.

A. Reinversion

Since the simplex method is a numeric computational procedure, it is inevitable for roundoff errors to be
produced and accumulated throughout the sequence of iterations required to find the optimal solution. These
errors could create infeasibility ornonoptimal conditions; that is, when the final solution is obtained and the
corresponding values of the variables are substituted in the original set of constraints, either the solution might
not satisfy the original requirements, or the pricing-out computations might generate some nonzero reduced
costs for the basic variables.

To address these problems, most codes use the original values of the coefficient matrix to reinvert the
basis periodically, thus maintaining its accuracy. The frequency of reinversion can be specified externally by
the user; otherwise, it will be defined internally by the mathematical-programming system. Some computer
codes fix the automatic reinversion frequency at a constant number of iterations performed; e.g., the basis
is reinverted every 50 to 100 iterations. Other codes define the reinversion frequency as a multiple of the
number of rows in the problem to be optimized; e.g., the basis is reinverted every 1.25 to 1.40m iterations,
wherem is the number of constraints.

Most codes compute a basis reinversion when the final solution has been obtained to assure its feasibility
and optimality.

B. Tolerances

In order to control the degree of accuracy obtained in the numerical computations, most linear-programming
codes permit the user to specify the tolerances he is willing to accept. Feasibility tolerances are designed to
check whether or not the values of the nonbasic variables and the reduced cost of the basic variables are zero.
Unless otherwise specified by the user, these checks involve internally set-up tolerance limits. Typical limits
are−0.000001 and+0.000001.

There are also pivot rejection tolerances that prevent a coefficient very close to zero from becoming a
pivot element in a simplex iteration. Again, 10−6 is a normal tolerance to use for this purpose, unless the
user specifies his own limits.

C. Errors

As we have indicated before, errors usually are detected when the optimal values of the variables are substituted
in theoriginal set of constraints.Row errorsmeasure the difference between the computed values of the
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lefthand sides of the constraints, and the original righthand-side value, i.e., for equality constraints:

n∑
j =1

ai j x0
j − bi = i th row error,

where thex0
j ’s are the corresponding optimal values ofthe variable. Similarly, there arecolumn errors, which

are calculated by performing similar computations with the dual problem, i.e., for a basic column:

m∑
i =1

ai j y0
i − ci = j th column error,

where they0
i ’s are the corresponding optimal values for thedual variables. Some codes have an internally

determined or externally specified error frequency, which dictates how often errors are calculated and checked
against the feasibility tolerances. If the computed errors exceed the prescribed tolerances, abasis reinversion
is called for automatically. Restoring feasibility might demand a Phase I computation, or a dual simplex
computation.

Many codes offer options to the user with regard to the output of the error calculations. The user might
opt for a detailed printout of all column and row errors, or might be satisfied with just the maximum column
and row error.

Whenever extra accuracy is required, some codes allowdouble precisionto be used. This means that the
space reserved in the computer for the number of significant figures to represent the value of each variable
is doubled. Computing with the additional significant digits provides additional precision in the calculations
required by the solution procedure.

Output Specifications

Once the optimal solution has been obtained, most computer codesprovide the user with a great amount of
information that describes in detail the specific values of the optimal solution and itssensitivity to changes
in some of the parameters of the original linear-programming problem. We will review some of the most
important features associated with output specifications.

a) Standard Output Reports

Typical information produced by standard commercial codes might include:

Optimal value of the objective function.This isobtained by substituting the optimal values of the decision-
variables in the original objective function. When the model has been constructed properly, the value of
the objective function is a finite number. If no feasible solution exists, the computerprogram will indicate
that the problem is infeasible, and no specific value of the objective function will be given. The remaining
alternative occurs when the objective function can be increased (if we are maximizing) or decreased (if we
are minimizing) indefinitely. In this situation, the program will report an unbounded solution, which is a
clear indication in any practical application that an error has been made in the model formulation.

Optimal values of the decision variables.For each ofthe decision variables the program specifies its optimal
value.Except for degenerate conditions, all the basic variables assume positive values. Invariably, all nonbasic
variables have zero values. There are as many basic variables as constraints in the original problem.

Slacks and surpluses in the constraints.‘‘Less than or equal to’’(≤) constraints might have positive slacks
associated with them. Correspondingly, ‘‘greater than or equal to’’(≥) constraints might have positive
surpluses associated with them. The program reports the amount of these slacks and surpluses in the optimal
solution. Normally, a slackcorresponds to an unused amount of a given resource, and a surplus corresponds
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to an excess above a minimum requirement.

Shadow prices for constraints.The shadow price associated with a given constraint corresponds to the
change in the objective function when the original righthand side of that constraint is increased by one unit.
Shadow prices usually can be interpreted as marginal costs (if we are minimizing) or marginal profits (if we
are maximizing). Constraints that have positive slacks or surpluses have zero shadow prices.

Reduced costs for decision variables.Reduced cost can be interpreted as the shadow prices corresponding to
the nonnegativity constraints. All basic variables have zero reduced costs. The reduced cost associated with
a nonbasic variable corresponds tothe change in the objective function whenever the corresponding value of
the nonbasic variable is increased from 0 to 1.

Ranges on coefficients of the objective function.Ranges are given for each decision variable, indicating the
lower and upper bound the cost coefficient of the variable can take without changing the current value of the
variable in the optimalsolution.

Ranges on coefficients of the righthand side.Ranges are given for the righthand-side element of each con-
straint, indicating the lower and upper value the righthand-side coefficient of a given constraint can take
without affecting the value of the shadow price associated with that constraint.

Variable transitions resulting from changes in the coefficients of the objective function.Whenever a coeffi-
cient of the objective function is changed beyond the range prescribed above, a change of the basis will take
place. This element of the output report shows, for each variable, what variable will leave the basis and what
new variable will enter the basis if the objective-function coefficient of the corresponding variable were to
assume a value beyond its current range. If there is no variable to drop, the problem becomes unbounded.

Variable transitions resulting from changes in thecoefficient of the righthand side.Similarly, whenever a
coefficient of the righthand side of a constraint is changed beyond the range prescribed above, a change in
the current basis will occur. This portion of the report shows, for each constraint, which variable will leave
the basis and which new variable will enter the basis if the righthand-side coefficient of the corresponding
constraint were to assume a value beyond its current range. If there is no variable to enter, the problem
becomes infeasible.

In the next section we present a simple illustration of these output reports.

b) Sensitivity and Parametric Analyses

In addition to providing the information just described, most codes allow the user to perform a variety of
sensitivity and parametric runs, which permit an effective analysis of the changes resulting in the optimal
solution when theoriginal specifications of the problem are modified. Quite often the user is not interested in
obtaining a single solution to a problem, but wants to examine thoroughly a series of solutions to a number
of cases. Some of the system features to facilitate this process are:

Multiple objective functions and righthand sides.We noticed before that provisions are made in many codes
for the user to input several objective functions. The problem is solved with one objective function at a time,
the optimal solution of oneproblem serving as an initial solution for the new problem. Sometimes only a few
iterations are required to determine the new optimum, so that this process is quite effective. In this fashion,
changes of the optimal solution with changes in the cost or revenue structure of the model can be assessed
very rapidly. Similar options are available for processing the problem with one righthand side at a time,
through a sequence of righthand sides provided by the user. Some codes use the dual simplex method for this
purpose.

Parametric Variation. Another way to assess sensitivity analysis with regard to objective functions and
righthand sides is to allow continuous changes to occur from a specified set of coefficients for the objective
function or the righthand side to another specified set. This continuous parametrization exhaustively explores
the pattern of the solution sensitivity in a very efficient manner. Some codes allow for a joint parametrization
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of cost coefficients and righthand-side elements.

Revisions of the original model formulation.Finally, many codes allow revisions to be incorporated in the
model structure without requiring a complete reprocessing of the new problem. These revisions might effect
changes in specific parameters of the model, as well as introduce new variables andnew constraints.

c) Report generators

Given the massive amount of highly technical information produced by a linear-programming code, it is
most desirable to translate the output into a report directed to an application-oriented user. This is almost
mandatory when using linear programming as an operational tool to support routine managerial decision-
making. The most sophisticated mathematical-programming systems contain capabilities for the generation
of general-purpose reports. Special-purpose reports easily can be programmed externally in any one of the
high-level programming languages (like FORTRAN, APL, or BASIC).

5.4 A SIMPLE EXAMPLE

The basic purpose of this section is to illustrate, via a very small and simple example, the elements contained in
a typical computer output of a linear-programming model. The example presented is a multistage production-
planning problem. In order tosimplify our discussion and to facilitate the interpretation of the computer output,
we have limited the size of the problem by reducing to a bare minimum the number of machines, products, and
time periods being considered. This tends to limit the degree of realism of the problem, but greatly simplifies
the model formulation. For some rich and realistic model-formulation examples, the reader is referred to the
exercises at the end of this chapter, and to Chapters 6, 7, 10,and 14.

A Multistage Planning Problem

An automobile tire company has the ability to produce both nylon and fiberglass tires. During the next three
months they have agreed to deliver tires as follows:

Date Nylon Fiberglass

June 30 4,000 1,000
July 31 8,000 5,000
August 31 3,000 5,000

Total 15,000 11,000

The company has two presses, a Wheeling machine and a Regal machine, and appropriate molds that can
be used to produce these tires, with the following production hours available in the upcoming months:

Wheeling Regal
machine machine

June 700 1500
July 300 400
August 1000 300

The production rates for each machine-and-tire combination, in terms ofhours per tire, are as follows:

Wheeling Regal
machine machine

Nylon 0.15 0.16
Fiberglass 0.12 0.14

The variable costs of producing tires are $5.00 per operating hour, regardless of which machine is being
used or which tire is being produced. There is also an inventory-carrying charge of $0.10 per tire per month.
Material costs for the nylon and fiberglass tires are $3.10 and $3.90 per tire, respectively. Finishing, packaging



5.4 A Simple Example 191

and shipping costs are $0.23 per tire. Prices have been set at $7.00 per nylon tire and $9.00 per fiberglass
tire.

The following questions have been raised by the production manager of the company:

a) How should the production be scheduled in order to meet the delivery requirements at minimum costs?

b) What would be the total contribution to be derived from this optimal schedule?

c) A new Wheeling machine is due to arrive at the beginning of September. For a $200 fee, it would be
possible to expedite the arrival of the machine to August 2, making available 172 additional hours of
Wheeling machine time in August. Should the machine be expedited?

d) When would it be appropriate to allocate time for the yearly maintenance check-up of the two machines?

Model Formulation

We begin by applying the steps in model formulation recommended in Section 5.2.

Selection of a Time Horizon

In this particular situation the time horizon covers three months, divided into three time periods of a month’s
duration each. More realistic production-planning models normally have a full-year time horizon.

Selection of Decision Variables and Parameters

We can determine what decision variables are necessary by defining exactly what information the plant
foreman must have in order to schedule the production. Essentially, he must know the number of each type of
tire to be produced on each machine in each month and the number of each type of tire to place in inventory
at the end of each month. Hence, we have the following decision variables:

Wn,t = Number of nylon tires to be produced on the Wheeling machine during
montht ;

Rn,t = Number of nylon tires to be produced on the Regal machine during
montht ;

Wg,t = Number of fiberglass tires to be produced on the Wheeling machine in
montht ;

Rg,t = Number of fiberglass tires to be produced on the Regal machine in
montht ;

In,t = Number of nylon tires put into inventory at the end of montht ;
Ig,t = Number of fiberglass tires put into inventory at the end of montht .

In general there are six

variables per time period and since there are three months under consideration, we have a total of eighteen
variables. However, it should be clear that it would never be optimal to put tires into inventory at the end of
August since all tires must bedeliveredby then. Hence, we can ignore the inventory variables for August.

The parameters of the problem are represented by the demand requirements, the machine availabilities,
the machine productivity rates, and the cost and revenue information. All these parameters are assumed to
be known deterministically.

Definition of the Constraints

There are two types of constraint in this problem representing production-capacity available and demand
requirements at each month.

Let us develop the constraints for the month of June. The production-capacity constraints can be written
in terms of production hours on each machine. For the Wheeling machine in June we have:

0.15Wn,1 + 0.12Wg,1 ≤ 700,
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while, for the Regal machine in June, we have:

0.16Rn,1 + 0.14Rg,1 ≤ 1500.

The production constraints for future months differ only in the available number of hours of capacity for the
righthand side.

Now consider the demand constraints for June. For each type of tire produced in June we must meet the
demand requirement and then put any excess production into inventory. The demand constraint for nylon
tires in June is then:

Wn,1 + Rn,1 − In,1 = 4000,

while for fiberglass tires in June it is:

Wg,1 + Rg,1 − Ig,1 = 1000.

In July, however, the tires put into inventory in June are available to meet demand. Hence, the demand
constraint for nylon tires in July is:

In,1 + Wn,2 + Rn,2 − In,2 = 8000,

while for fiberglass tires in July it is:

Ig,1 + Wg,2 + Rg,2 − Ig,2 = 5000.

In August it is clear that tires willnotbe put into inventory at the end of the month, so the demand constraint
for nylon tires in August is:

In,2 + Wn,3 + Rn,3 = 3000,

while for fiberglass tires in August it is:

Ig,2 + Wg,3 + Rg,3 = 5000.

Finally, we have the nonnegativity constraints on all of the decision variables:

Wn,t ≥ 0, Wg,t ≥ 0, (t = 1, 2, 3);

Rn,t ≥ 0, Rg,t ≥ 0, (t = 1, 2, 3);

In,t ≥ 0, Ig,t ≥ 0, (t = 1, 2).

Selection of the Objective Function

The total revenues to be obtained in this problem are fixed, because we are meeting all the demand re-
quirements, and maximization of profit becomes equivalent to minimization of cost. Also, the material-cost
component is fixed, since we know the total amount of each product to be produced during the model time hori-
zon. Thus, a proper objective function to select is the minimization of the variable relevant cost components:
variable production costs plus inventory-carrying costs.

Now, since each kind of tire on each machine has a different production rate, the cost of producing a tire
on a particular machine will vary, even though the variable cost per hour is constant for each tire-and-machine
combination. The variable production cost per tire for the fiberglass tires made on the Regal machine can
be determined by multiplying the production rate (in hours/tire) by the variable production cost (in $/hour)
resulting in(0.14)(5) = $0.70/tire. The remaining costs for producing each tire on each machine can be
computed similarly, yielding

Wheeling machine Regal machine

Nylon 0.75 0.80
Fiberglass 0.60 0.70
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Given the inventory-carrying cost of $0.10 per tire per month, we have the following objective function
for minimizing costs:

3∑
t=1

(0.75Wn, t + 0.80Rn, t + 0.60Wg, t + 0.70Rg, t + 0.10In, t + 0.10Ig, t );

and we understand thatIn, 3 = 0 andIg, 3 = 0.
The formulation of this problem is summarized in Table 5.3. This problem is what we call a multistage

model, because it contains more than one time period. Note that the constraints of one time period are linked
to the constraints of another only by the inventory variables. This type of problem structure is very common
in mathematical programming. Note that there are very few elements different from 0, 1, and−1 in the
tableau given in Table 5.3. This problem structure can be exploited easily in the design of a matrix generator,
to provide the input for the linear-programming computation.

Computer Results

We will now present the computer output obtained by solving the linear-programming model set forth in
Table 5.3 by means of an interactive system operated from a computer terminal.
The notation describing the decision variables has been changed slightly, in order to facilitate computer
printouts. For example:

WN–T = Number of nylon tires produced
on the Wheeling machine in month T.

Similar interpretations can be given to variables WG–T (number of fiberglass tires on the Wheeling
machine), RN–T, and RG–T (number of nylon and fiberglass tires, respectively, produced on the Regal
machine at month T). IN–T and IG–T denote the number of nylon and fiberglass tires, respectively, left over
at the end of period T.

The production constraints are represented by W–T and R–T, meaning the hours of Wheeling and Regal
machine availability at period T. N–T and G–T stand for the demand at period T of nylon and fiberglass tires,
respectively.
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Figure 5.1 is the computer output of the problem. The reader should reflect about the meaning of each
of the elements of the output. The output provides exactly the same information discussed under the title
Standard Output Reports in Section 5.3. The reader is referred to that section for a detailed explanation of
each output element.

Answering the Proposed Questions

With the aid of the optimal solution of the linear-programmingmodel, we can answer the questions that were
formulated at the beginning of this problem.

a) Production Scheduling

Examination of the optimal values of the decision variables in thelinear-programming solution reveals that
the appropriate production schedule should be:

Wheeling Regal
machine machine

1867 7633
June


No. of nylon tires
No. of fiberglass tires
Hrs. of unused capacity

3500 0
0 279

0 2500
July


No. of nylon tires
No. of fiberglass tires
Hrs. of unused capacity

2500 0
0 0

2667 333
August


No. of nylon tires
No. of fiberglass tires
Hrs. of unused capacity

5000 0
0 247

The unused hours of each machine are the slack variables of the computer output.
The resulting inventory at the end of each month for the two types of products is as follows:

June July August

Inventory of nylon tires 5500 0 0
Inventory of fiberglass tires 2500 0 0
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Figure 5.1 Computer printout of solution of the problem. (Cont. on next page.)
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Figure 5.1 (Concluded)
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b) Summary of Costs and Revenues

Total costs.The total costs are the variable production costs, the inventory costs, the cost of raw materials,
and the finishing, packaging, and shipping costs.

The variable production and inventory costs are obtained directly from the optimal value of the objective
function of thelinear-programming model. These costs are equal to $19,173.30.

Raw-material costs are $3.10 per nylon tire and $3.90 per fiberglass tire. The total production of nylon
and fiberglass tires is given in the delivery schedule. The total material costs are therefore:

Raw material cost for nylon tires 3.10× 15,000= $46,500
Raw material cost for fiberglass tires 3.90× 11,000= 42,900

Total raw material cost $89,400

The finishing, packaging, and shipping costs are $0.23 per tire. Since we are producing 26,000 tires, this
cost amounts to 0.23× 26,000= $5,980.

Thus the total costs are:

Variable production and inventory $19,173.30
Raw material 89,400.00
Finishing, packaging and shipping 5,980.00

Total cost $114,553.30

Total revenues.Prices per tire are $7.00 for nylon and $9.00 for fiberglass. Therefore, the total revenue is:

Nylon revenues $7.00× 15,000= $105,000
Fiberglass revenues $9.00× 11,000= 99,000

Total revenues $204,000

Contribution. The contribution to the company is:

Total revenues $204,000.00
Total cost 114,553.30

Total contribution $ 89,446.70

From this contribution we should subtract the corresponding overhead cost to be absorbed by this contract,
in order to obtain thenet contribution before taxesto the company.

c) Expediting of the New Machine

The new machine is a Wheeling machine, which is preferred to the Regal equipment. The question iscan it
be used, andhow much? Even if the machine were fully utilized, the hourly marginal cost would be:

$200

172 hrs
= $1.16/hr.

Examination of the shadow price for Wheeling machines in August reveals that it would be worth only
$0.33 to have an additional hour of time on Wheeling equipment. We should therefore recommendagainst
expediting the additional machine.
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d) Maintenance Schedule

We are not told in the problem statement the amount of time required to service a given machine, or whether
maintenance can just as well be performed later, or how much it would cost to do it at night and on weekends.
We therefore cannot tell the maintenance department exactly what to do. We can, however, tell them that the
Wheeling machines are completely used, but 278 hours are available on the Regal machines in June and 246
in August. These hours would be ‘‘free.’’

The shadow prices show that, by adjusting the production schedule, Wheeling machine time could be
made available in June and August at a cost of $0.33/hr. During June we can have, at this cost, a total of
261.25 hours (the difference between the current availability, 700 hours, and the lower bound of the range
for the W–1 righthand-side coefficient, 438.75). During August we will have available at $0.33/hr a total of
231.25 hours (the difference betweenthe current availability, 1000 hours, and the lower bound of the range
for the W–3 righthand-side coefficient, 768.75).

EXERCISES

1. The Pearce Container Corporation manufactures glass containers for a variety of products including soft drinks,
beer, milk, catsup and peanut butter. Pearce has two products that account for 34% of its sales: container Type 35
and container Type 42. Pearce is interested in using a linear program to allocate production of these two containers
to the five plants at which they are manufactured. The following is the estimated demand for the two types of
containers for each quarter of next year: (1 unit= 100,000 containers)

Type Plant 1st Qtr. 2nd Qtr. 3rd Qtr. 4th Qtr.

35 1 1388 1423 1399 1404
35 2 232 257 256 257
35 3 661 666 671 675
35∗ 4 31 32 34 36

42 1 2842 2787 3058 3228
42 2 2614 2551 2720 2893
42 3 1341 1608 1753 1887
42 4 1168 1165 1260 1305
42 5 1106 1138 1204 1206

∗ Plant 5 does not produce Type 35.

Pearce has ten machines at the five plants; eight of the machines can produce both Types 35 and 42, but two
of the machines can produce only Type 42. Because the ten machines were purchased singly over a long period of
time, no two machines have the same production rate or variable costs. After considerable research, the following
information was gathered regarding the production of 1 unit (100,000 containers) by each of the ten machines:
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Plant Machine Type Cost Machine-days Man-days

1 D5 35 760 0.097 0.0194
42 454 0.037 0.0037

D6 35 879 0.103 0.0206
42 476 0.061 0.0088

C4 35 733 0.080 0.0204
42 529 0.068 0.0083

2 T 42 520 0.043 0.0109

U2 35 790 0.109 0.0145
42 668 0.056 0.0143

3 K4 35 758 0.119 0.0159
42 509 0.061 0.0129

J6 35 799 0.119 0.0159
42 521 0.056 0.0118

70 35 888 0.140 0.0202
42 625 0.093 0.0196

4 1 35 933 0.113 0.0100
42 538 0.061 0.0081

5 V1 42 503 0.061 0.0135

During production a residue from the glass containers is deposited on the glass machines; during the course of
a year machines are required to be shut down in order to clean off the residue. However, four of the machines are
relatively new and will not be required to be shut down at all during the year; these are machines: C4, D5, K4, and
V1. The following table shows the production days available for each machine by quarters:

Machine 1st Qtr. 2nd Qtr. 3rd Qtr. 4th Qtr.

C4 88 89 89 88
D5 88 89 89 88
D6 72 63 58 65
U2 81 88 87 55
T 88 75 89 88
K4 88 89 89 88
J6 37 89 39 86
70 54 84 85 73
1 42 71 70 68
V1 88 89 89 88

Days in quarter 88 89 89 88

In order to meet demands most efficiently, Pearce ships products from plant to plant. This transportation process
ensures that the most efficient machines will be used first. However, transportation costs must also be considered.
The following table shows transportation costs for shipping one unit between the five plants; the cost is the same
for Type 35 and Type 42; Type 35 is not shipped to or from Plant 5.

Inter-plant transport(100,000 containers)

To Plant

From Plant 1 2 3 4 5

1 — 226 274 933 357
2 226 — 371 1022 443
3 274 371 — 715 168
4 941 1032 715 — 715
5 357 443 168 715 —
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It is possible to store Type 35 and Type 42 containers almost indefinitely without damage to the containers.
However, there is limited storage space at the five plants. Also, due to storage demands for other products, the
available space varies during each quarter. The space available for Types 35 and 42 is as follows:

Inventory capacity(100,000 bottles= 1 unit)

Plant 1st Qtr. 2nd Qtr. 3rd Qtr. 4th Qtr.

1 376 325 348 410
2 55 48 62 58
3 875 642 573 813
4 10 15 30 24
5 103 103 103 103

It was found that there was no direct cost for keeping the containers in inventory other than using up storage
space. However, there were direct costs for handling items, i.e., putting inand taking out of inventory. The costs
for handling containers was as follows by type and by plant for one unit:

Handling costs(in $/unit)

Plant Type 35 Type 42

1 85 70
2 98 98
3 75 75
4 90 80
5 — 67

a) Apply the stages of model formulation discussed in Section 5.2 to the Pearce Container Corp. problem. Precisely
interpret the decision variables, the constraints, and the objective function to be used in the linear-programming
model.

b) Indicate how to formulate the linear program mathematically. It is not necessary to write out the entire initial
tableau of the model.

c) Determine the number of decision variables and constraints involved in the model formulation.

2. The Maynard Wire Company was founded in 1931 primarily to capitalize on the telephone company’s expanding
need for high-quality color-coded wire. As telephone services were rapidly expanding at that time, the need for
quality color-coded wire was also expanding. Since then, the Maynard Wire Company has produced a variety of
wire coatings, other wire products, and unrelated molded-plastic components. Today a sizable portion of its business
remains in specially coated wire. Maynard Wire has only one production facility for coated wire, located in eastern
Massachusetts, and has sales over much of the northeastern United States.

Maynard Wire is an intermediate processor, in that it purchases uncoated wire in standard gauges and then
applies the various coatings that its customers desire. Basically there are only two types of coatings requested—
standard inexpensive plastic and the higher-quality Teflon. The two coatings then come in a variety of colors,
achieved by putting special dyes in the basic coating liquid. Since changing the color of the coating during the
production process is a simple task, Maynard Wire has essentially two basic products.

Planning at Maynard Wire is done on a quarterly basis, and for the next quarter the demands for each type of
wire in tons per month are:

Product July August September

Plastic coated 1200 1400 1300
Quality Teflon 800 900 1150

The production of each type of wire must then be scheduled to minimize the cost of meeting this demand.

The Production process at Maynard Wire is very modern and highly automated. The uncoated wire arrives in
large reels, which are put on spindles at one end of the plant. The uncoated wire is continuously drawn off each
successive reel over some traverse guides and through a coating bath containing either the standard plastic or the
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more expensive Teflon. The wire then is pulled through an extruder, so that the coating liquid adheres evenly to the
wire, which then continues through a sequence of four electric drying ovens to harden the coating. Finally, the wire
is reeled up on reels similar to those it arrived on. Different dyes are added to the coating liquid during the process
to produce the various colors of wire ordered.

Maynard Wire has two, basically independent, wire trains within the plant, one engineered by the Kolbert
Engineering Corporation and the other purchased secondhand from the now defunct Loomis Wire Company. Both
the standard plastic and the quality Teflon types of wire can be produced on either process train. The production
rates in tons per day are:

Process train Plastic Quality Teflon

Kolbert 40 35
Loomis 50 42

Producing the quality Teflon wire is a slower process due to the longer drying time required. The associated
variable operating cost for the month of July in dollars per day are:

Process train Plastic Quality Teflon

Kolbert 100 102
Loomis 105 108

However, because each month the process trains must be shut down for scheduled maintenance, there are fewer
days available for production than days in the month. The process-train availabilities in days per month are:

Process train July August September

Kolbert 26 26 29
Loomis 28 27 30

Both types of wire may be stored for future delivery. Space is available in Maynard Wire’s own warehouse,
but only up to 100 tons. Additional space is available essentially without limit on a leased basis. The warehousing
costs in dollars per ton between July and August are:

Product Warehouse Leased

Plastic 8.00 12.00
Quality Teflon 9.00 13.00

A linear program has been formulated and solved that minimizes the total discounted manufacturing and
warehousing costs. Future manufacturing and warehousing costs have been discounted at approximately ten percent
per month. The MPS input format∗, picture, and solution of the model are presented (see Figs. E5.1 and E5.2). Also,
there is a parametric righthand-side study that increases the demand for standard plastic-coated wire in September
from 1300 to 1600 tons. Finally, there is a parametric cost run that varies the warehousing cost for quality Teflon-
coated wire from $8.00 to $12.00.

Typical rows and columns of the linear program are defined as follows:

∗ MPS stands for Mathematical Programming System. It is a software package that IBM has developed to solve general
linear-programming models.



Rows
COST Objective function
DCOST Change row for PARAOBJ
1P Demand for plastic-coated wire in month 1
1K Process-train availability in month 1
2WS Warehouse limitation in month 2

Columns
1K-P Production of plastic-coated wire on Kolbert train in month 1
WP12 Warehousing plastic-coated wire from the end of month 1 to the end of month 2
LP12 Leasing warehouse space for plastic-coated wire from the end of month 1 to the

end of month 2
RHS1 Righthand side
RHS2 Change column for PARARHS

a) Explain the optimal policy for Maynard Wire Company when the objective function is COST and the righthand
side is RHS1.

b) What is the resulting production cost for the 300-ton incremental production of plastic-coated wire in month 3?
c) How does the marginal production cost of plastic-coated wire vary when its demand in month 3 is shifted from

1300 to 1600 tons?
d) How does the operating strategy vary when the warehousing cost for quality Teflon-coated wire shifts from $8.00

to $12.00 with the demand for plastic-coated wire in month 3 held at 1600 tons?

3. Toys, Inc., is a small manufacturing company that produces a variety of children’s toys. In the past, water pistols
have been an exceptionally profitable item, especially the miniature type which can be hidden in the palm of one
hand. However, children recently have been buying water rifles, which permit the stream of water to be projected
much farther. Recognizing that this industry trend was not a short-lived fad, Toys, Inc., started to produce a line of
water rifles.

After several months of production, Toys’ General Manager, Mr. Whett, ran into a storage problem. The older
and smaller water pistols had not occupied much space, but the larger water rifles were quite bulky. Consequently,
Mr. Whett was forced to rent storage space in a public warehouse at 28c/ per case per month, plus 44c/ per case for
cost of handling. This made Mr. Whett wonder whether producing water rifles was profitable. In addition, Mr.
Whett wondered whether it might not be better to increase his production capacity so that fewer cases would be
stored in the slack season.

Data:

The following information was obtained from Toys’ accounting department:

Desired return on investment: 10% after taxes

Tax rate: 55% (including state taxes)

Variable manufacturing cost: $21.00/case, or $9.50/case after taxes

(Variable costs include all overhead and so-called ‘‘fixed" costs, except for the cost of production equipment. This
seems appropriate, since the company has expanded so rapidly that ‘‘fixed" costs have actually been variable.)

Warehousing: $0.28/case per month, or $0.126/case per month after taxes

Handling: $0.44/case, or $0.198/case after taxes

Opporturnity cost of tying up capital in inventory: ($21.00× 10%)÷ 12 months= $0.18/case per month

Selling price: $28.10/case, or $12.61 after taxes

Existing production capacity: 2750 cases per month

Cost of additional production capacity: $6400/year after taxes, for each additional 1000 cases/month. This figure
takes into account the investment tax credit and the discounted value of the tax shield arising out of future depreciation.

The anticipated demand, based on past sales data, for the next 12 months is given below. The first month is
October, and the units are in cases.

202
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Month Demand(Cases)

October 1490
November 2106
December 2777
January 843
February 1105
March 2932
April 1901
May 4336
June 4578
July 1771
August 4745
September 3216

Total 31800

Formulating the model:

The program variables are defined as follows:

PRD-1 to PRD12 identify theproductionconstraints for the 12 periods.

DEM-1 to DEM12 identify thedemand constraints for the 12 periods.

CAP-1 to CAP12 identify thecapacity constraints for the 12 periods.

CNG-1 to CNG12 identify the constraints describing changesin inventory levels for the 12 periods.

X1 to X12 are the cases produced in each period. Associated with these variables are production costs of $9.50.

S1 to S12 are the cases sold in each period. Associated with these variables are revenues of $12.61 per case.

Y1 to Y12 are the cases in inventory at the beginning of the designated period. Associated with these variables are
storage and cost of capital charges, totaling $0.306/case per month.

U1 to U12 are the unfilled demand in each period. No attempt has been made to identify a penalty cost associated
with these variables.

Q1 to Q11 are the changes in inventory levels from one period to the next. Since a handling charge of $0.198/case
is associated only with increases in inventory, these variables have been further designated as Q1+, Q1−, etc. to
indicate increases (+) and decreases (−) in inventory levels.

+CAP-1 to+CAP12 are the slack variables supplied by the computer to represent unused production capacity in
the designated period.

A typical production constraint, PRD-2, is shown below:

Y2 + X2 − S2− Y3 = 0.

This expression indicates that the beginning inventory, plus the production, minus the sales must equal the ending
inventory.

In the beginning of period 1 and at the end of period 12, the inventory level is set equal to zero. Hence, these
equations become:

X1 − S1− Y2 = 0 and Y12+ X12 − S12= 0.

A typical demand constraint, DEM-2, is shown below:

S2+ U2 = 2106.

This expression indicates that the cases sold, plus the unfilled demand, must equal the total demand for that period.
A typical capacity constraint, CAP-2, is shown below:

X2 ≤ 2750.
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This inequality indicates that the maximum number of cases that can be produced in any given month is 2750.
And lastly, a typical inventory level constraint, CNG-2, is shown below:

Y3 − Y2 = Q2 = (Q2+) − (Q2−).

This expression indicates that Q2 must equal the change in inventory level that occurs during period 2.
Since there is no beginning inventory, the change in inventory level that occurs during period 1 must equal the

beginning inventory for period 2. Hence,

Y2 = Q1+ Q1– must be zero, since negative inventories are impossible.

Theobjective functionis to maximize the contribution, which equals:

$12.61
12∑

i=1

Si − 9.50
12∑

i=1

Xi − 0.306
12∑

i=1

Yi − 0.198
12∑

i=1

Qi+

The following 9 pages provide the output to be used in discussing the Toys, Inc. problem.
Page 257 gives the optimum solution for the initial problem statement. Capacity is fixed at 2750 cases per

month at every time period.
Pages 258 and 259 contain, respectively, the cost ranges and righthand-side ranges associated with the optimum

solution of the initial problem.
Pages 260 through 264 give details pertaining to a parametric analysis of the capacity availability. In each time

period, the capacity is increased from its original value of 2750 to 2750+ THETA × 1375. The computer reports
only solutions corresponding to a change of basis. Such changes have taken place at values of THETA equal to
0.235, 0.499, 1.153, 1.329, and 1.450, which are reported on pages 260 to 264, respectively.

Page 265 presents a parametric study for the cost associated with unfilled demand. The cost of unfilled demand
is increased from its initial value of 0 to PHI× 1, for every demand period. Page 257 gives the optimum solution
for PHI = 0; page 265 provides the optimum solution for PHI= 0.454. Beyond this value of PHI the solution does
not change.
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Figure E5.1 Model of program for manufacturing and warehousing costs. (Continued on next page.)
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Figure E5.1 (Continued)
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Figure E5.1 (Concluded)
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Figure E5.2 Solution of program. (Cont.)
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Figure E5.2 Solution of program.
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Figure E5.2 (Cont.)
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Figure E5.2 (Cont.)
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Figure E5.2 (Cont.)
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Figure E5.2 (Cont.)
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Figure E5.2 (Cont.)
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Figure E5.2 (Concluded)



Figure E5.3 Optimum solution for Toys, Inc., cost and righthand-side ranges; parametric RHS
analysis, and parametric cost ranging. (Cont.)
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Figure E5.3 (Cont.)
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Figure E5.3 (Cont.)
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Figure E5.3 (Cont.)
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Figure E5.3 (Cont.)
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Figure E5.3 (Cont.)
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Figure E5.3 (Cont.)
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Figure E5.3 (Cont.)
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Figure E5.3 (Concluded)
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Using the computer output supplied, answer the following questions.

a) Draw a graph depicting the following as a function of time, assuming a capacity of 2750 cases per month.

i) Cases demanded
ii) Cases produced

iii) Cases in inventory
iv) Cases of unfilled demand

Explain thoroughly what this graph implies about the optimal operations of Toys, Inc.
b) Give a complete economic interpretation of the dual variables.
c) Give a concise explanation of the righthand-side and cost ranging output.
d) Use the parametric programming of the righthand side as a basis for discussion the optimal production capacity.
e) Use the parametric programming of the cost function as a basis for discussing the ‘‘value" of goodwill loss

associated with unfilled demand. (When demand is not met, we lose some goodwill of our customer. What is
this loss worth?)

4. Solving an LP by computer.Your doctor has found in you a very rare disease, ordinarily incurable, but, in your
case, he believes that perhaps something can be done by a series of very elaborate treatments coupled with a strict
diet. The treatments are so expensive that it becomes necessary to minimize the cost of the diet.

The diet must provide minimum amounts of the following items: calories, calcium, vitamin A, riboflavin, and
ascorbic acid. Your daily requirement for these items (in the above order) may be determined by reading off the
numerical values corresponding to the first five letters of your name on Table 5.4. The following are the units used:
102 calories, 10−2 grams, 102 international units, 10−1 milligrams, and milligrams.

Table 5.4 Diet Requirements

Diet ProductX Diet ProductX

A 7 63 N 6 91
B 60 52 O 10 45
C 83 59 P 32 82
D 10 85 Q 51 98
E 39 82 R 47 67
F 59 58 S 20 97
G 38 50 T 66 28
H 30 69 U 78 54
I 65 44 V 81 33
J 27 26 W 81 59
K 91 30 X 61 61
L 68 43 Y 0 39
M 49 90 Z 86 83

Your choice of foods is somewhat limited because you find it financially advantageous to trade at a discount
store that has little imagination. You can buy: (1) wheat flour (enriched), (2) evaporated milk, (3) cheddar cheese,
(4) beef liver, (5) cabbage, (6) spinach, (7) sweet potatoes, (8) lima beans (dried).

The nutritional values per dollar spent have been tabulated by Dantzig (who regularly patronizes the store) in
Table 5.5. In addition, the store features a grayish powder, Product X, sold in bulk, whose nutritional values per unit
cost are also given in Table 5.4. The units (same order of items as before) are 103 calories/dollar, 10−1 grams/dollar,
103 international units/dollar, 10−1 milligrams/dollar, milligrams/dollar.

Your doctor has coded your diet requirements and the nutritional properties of Product X under the first five
letters of your name in Table 5.4.

a) Find your minimum-cost diet and its cost.
b) How much would you be willing to pay for pure vitamin A? pure riboflavin?
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Table 5.5 Nutritive Values of Common Foods Per Dollar of Expenditure∗

Ascorbic
Calories Protein Calcium Iron Vitamin A ThiamineRiboflavin Niacin Acid

Commodity (1000) (grams) (grams) (mg.) (1000 I.U.) (mg.) (mg.) (mg.) (mg.)
. . .1. Wheat flour (enriched) 44.7 1411 2.0 365 — 55.4 33.3 441 —

5. Corn meal 36.0 897 1.7 99 30.9 17.4 7.9 106 —
15. Evaporated milk (can) 8.4 422 15.1 9 26.0 3.0 23.5 11 60
17. Oleomargarine 20.6 17 .6 6 55.8 .2 — — —
19. Cheese (cheddar) 7.4 448 16.4 19 28.1 .8 10.3 4 —
21. Peanut butter 15.7 661 1.0 48 — 9.6 8.1 471 —
24. Lard 41.7 — — — .2 — .5 5 —
30. Liver (beef) 2.2 333 .2 139 169.2 6.4 50.8 316 525
34. Pork loin roast 4.4 249 .3 37 — 18.2 3.6 79 —
40. Salmon, pink (can) 5.8 705 6.8 45 3.5 1.0 4.9 209 —
45. Green beans 2.4 138 3.7 80 69.0 4.3 5.8 37 862
46. Cabbage 2.6 125 4.0 36 7.2 9.0 4.5 26 5369
50. Onions 5.8 166 3.8 59 16.6 4.7 5.9 21 1184
51. Potatoes 14.3 336 1.8 118 6.7 29.4 7.1 198 2522
52. Spinach 1.1 106 — 138 918.4 5.7 13.8 33 2755
53. Sweet potatoes 9.6 138 2.7 54 290.7 8.4 5.4 83 1912
64. Peaches, dried 8.5 87 1.7 173 86.8 1.2 4.3 55 57
65. Prunes, dried 12.8 99 2.5 154 85.7 3.9 4.3 65 257
68. Lima beans, dried 17.4 1055 3.7 459 5.1 26.9 38.2 93 —
69. Navy beans, dried 26.9 1691 11.4 792 — 38.4 24.6 217 —

∗ Source: G. B. Dantzig,Linear Programming and Extension, Princeton University Press, Princeton, N.J., 1963.

c) A new food has come out (called GLUNK) having nutritional values per dollar of 83, 17, 25, 93, 07 (values are
in the same order and same units as for Product X). Would you want to include the new food in your diet?

d) By how much would the cost of lima beans have to change before it would enter (or leave, as the case may be)
your diet?

e) Over what range of values of cost of beef liver would your diet contain this wonderful food?
f) Suppose the cost of foods 1, 3, 5, 7, and 9 went up 10% but you continued on the diet found in (a). How much

would you be willing to pay for pure vitamin A? pure riboflavin?
g) If the wheat flour were enriched by 10 units of vitamin A without additional cost, would this change your diet?

ACKNOWLEDGMENTS

Exercise 1 is based on Chapter 14 ofApplied Linear Programming,by Norman J. Driebeck, Addison-Wesley
Publishing Company, Inc., 1969.
Exercises 2 and 3 are based on cases with the same names written by one of the authors.
Exercise 4 is a variation of the diet problem used by John D.C. Little of the Massachusetts Institute of
Technology.


